
Robust Schema Evolution Strategies
Anders Torvill Bjorvand

Department of Informatics, University of
Oslo

P.O. Box 1080 Blindern
N-0360 Oslo, Norway

+ 47 69 88 35 88

torvill@trolldata.no

ABSTRACT

In this paper, we describe two new schema evolution strategies.

Keywords
OODB, Schema evolution, Robust schemas.

1. INTRODUCTION
A common approach in modern database design is to model
several different and parallell understandings by parallell and
similar replicated structures and by excessive use of
versioning/inheritance. This will most often result in a
conceptually messed up model produced by coincidental
developments. Such a model can be overly complex and hence
hard to change. Another way to approach this problem is through
explicit multiperspective modelling using views. This is a very
direct and elegant way of approaching the problem. Efficiency can
also be quite good. The expressiveness will unfortunately suffer
due to the static nature of this approach. Only declarative
transformations can be encapsulated into this model.

In a scenario where we have a very high number of users and a
very high number of different applications, both of these
approaches will experience some additional difficulties. We choose
to disregard performance and replication issues, and will
concentrate on expressiveness and consistency.

2. STATE OF THE ART
The problems with the versioning approach [2] is mainly in the
domain of model consistency. There is no easy way to determine if
all the different versions are consistent with one another
semantically. When the number of versions grow very large, this
task gets to be incomprehensible. Another problem is also with
range restrictions. If a class/entity has a range restriction and a
derived schema needs to loosen up the range restriction, it can't do
that. Not all things you inherit are of benefit to you - like in life,
you need to break free.

The problems with the view approach [1] is mainly in the domain
of expressiveness. With diverse user communities, entities/classes
and attributes surely need to be added, and that can't be
accomplished by views alone, and new, separate database entities
must be added. Since we have no clear concept of version or
configuration, the total database will soon become a big mess.

It is our position that the task at hand needs a new approach that
grasps the best of these two worlds. We need the expressiveness of
the schema versioning approach, but we need the closeness to the
original/base model that the view approach offers. The versioning
tree in a system with very large number of applications will get so
large and with so many branches that consistency will be hard to
show.

3. TWO NOVEL APPROACHES
We will investigate two different and novel approaches to this
problem. The first one is a variation over the versioning approach
where all schema versions are collections of classes/entities that
are directly derived/inherited from a class in a main/root schema
(only one level of inheritance - no "grandchildren"). We thereby
flatten the hierarchy of the schema versioning approach. The
number of derivations can be many, but they all share a single
source directly. This makes it much easier to check for consistency.
We call this approach the robust schema versioning approach.

We are also investigating another, totally different approach called
the constructive schema approach. Data storage is basically about
storing simple (non-compound) data types in a proper structure.
Dealing with schema differences is making proper mapping
between different structures put on sets of simple data types.

All of these simple data entities are called properties and they are
described by a property_id, property_default_name, property_type
(non-compound data type). All instances of these properties have
the attributes property_instance_id (a sort of objectid) and
property_value. These instances have a one-to-many relation to a
class with the following attributes: property_instance_id, class_id,
class_version_id, property_override_name. This design ensures
that a property value can belong to both several versions of a
class, but also to entirely different classes due to different
modelling requirements. Let's say that one schema connects a
telephone number to a person, but another schema connects
several telephone numbers to a person. Both these schemas can
trivially be constructed from this structure.

By giving identity to the basic properties, we can construct new
schemas at run-time.

4. REFERENCES
[1] Bratsberg, Svein Erik (1992). Unified Class Evolution by

Object-Oriented Views. Proceedings of the 11th International
Conference on the Entity-Relationship Approach (ER),
Karlsruhe, Germany. Lecture Notes in Computer Science
645, pp. 423-439. Springer Verlag.



[2] Lautemann, Sven-Eric (1996). An Introduction to Schema
Versioning in OODBMS. Proceedings of the 7th
International Conference on Database and Expert Systems

Applications (DEXA), Zürich, Switzerland, September 1996.
Workshop Proceedings. IEEE Computer Society Press. pp.
132-139.


	INTRODUCTION
	STATE OF THE ART
	TWO NOVEL APPROACHES
	REFERENCES

